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Distorted Diffractors with Special  Reference to Collagen Fibres 
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The fan-shaped appearance of the low-angle X-ray diffraction patterns of dry collagen fibres, 
previously attributed to regions of disorder in the structure, is here considered to be due to regular 
shearing of the fibrils; it is shown that distortions of this kind lead to the observed diffraction spot 
shapes. First, the relation of low-angle to high-angle diffraction patterns is discussed and illustrated 
by optical analogues, and then the effects of longitudinal shear on two-dimensional diffraetors is 
investigated and optical illustrations are also presented. Diffraction by a bundle of independent 
cylindrical fibrils, simply sheared, is discussed as a model of collagen which shows the fanning 
effect. Finally a particularly simple kind of random distortion is critically examined and the results 
compared with those of Bear & Bolduan (1951). 

Introduction 

It  is well known that  collagen fibres have a longitudinal 
periodic variation of structure observable by electron- 
microscopy, the repeat distance being about 640 A. 
This large-scale variation is responsible for the low- 
angle X-ray diffraction pattern first resolved by Bear 
(1942). Later he and his colleagues used pin-hole 
collimation of the X-ray beam and observed that  
specimens of dried collagen sometimes yielded low- 
angle diffraction patterns in which the meridional 
spots were drawn out along the layer lines to an 
extent roughly proportional to the diffraction index, 
thus producing a so-called 'fanning' effect. These 
patterns may be found in a summary of this work by 
Bear (1952). I t  is to be emphasized that  the intensities 
are spread along the layer lines and that  this kind of 
distribution is distinct from the spreading of spots 
that  may occur as a result of disorientation of fibrils 
in the specimen. 

Bear & Bolduan (1950, 1951) have given a discussion 
of the fanning effect, attributing it to alternating 
regions of order and disorder in the fibre macro-period, 
and Bear (1952) has identified the assumed regions of 
disorder with the sites of uptake of phospho-tungstic 
acid which are readily observed by electron-micro- 
scopy. These authors postulated a particular kind of 
disordering of the structure and worked out in detail 
its effect upon the diffraction pattern showing that  a 
fanning effect would result. However, their model is 
not the only one capable of accounting for the fanning 
effect for it may be inferred from simple geometrical 
consideration of the observed diffraction patterns that  
they could be produced by a regular longitudinal 
shearing of the fibres. This paper examines the con- 
sequences of such shearings of diffractors, usually 
taken to be two-dimensional, and also discusses 
critically a simple example of the kind of problem 
considered by Bear & Bolduan (1951). 

Relation between low- and h igh-angle  
diffraction patterns 

The high-angle diffraction pattern due to a fibrous 
material such as collagen results from an intra- 
molecular periodic structure on the atomic scale, and 
the low-angle pattern from a much coarser density 
distribution superimposed upon the fine structure. The 
diffractor may be regarded as an axially periodic 
structure of closely spaced scattering elements whose 
electron density, or number density, varies periodically 
with a much larger period; i.e. the fine-scale diffractor 
has its scattering power modulated by a large-scale 
periodic function. The electron density may then be 
represented by the product of two functions, and the 
resulting diffraction pattern, which is the Fourier 
transform of this product, is given by the convolution 
of the transforms of the two separate functions (see 
for example McLachlan, 1957). If the structure is 
assumed to be of infinite extent the transform of the 
fine-structure function is a set of discrete values, the 
infinitely sharp diffraction orders of a wide-angle 
pattern. These may be represented by a set of Dirac 
d functions. If it is also assumed that  the transform 
of the modulation function decreases so rapidly that  
it cannot significantly overlap two of the d functions, 
then on convoluting it with these d functions there 
results a pattern consisting of this transform, i.e. the 
low-angle pattern, spread about each order of the wide- 
angle pattern. These conclusions are graphically illus- 
trated by the optical diffraction patterns of Fig. 1. 

Fig. l(a) shows the diffraction pattern due to an 
extended two-dimensional grating, the mask for which 
was produced by the 'fly's eye' technique. Fig. l(b) 
is the diffraction pattern due to a triangular aperture 
in an opaque screen. On placing this screen over the 
extended grating, thus modulating the transparency 
of the latter by a function which is a constant within 
the triangle and zero elsewhere, the resulting diffrac- 
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tion pattern was as shown in Fig. l(c), which clearly 
shows the transform of the modulating function 
centred on each point of the diffraction pattern of the 
small-period grating. Some allowance should be made 
for the limited intensity range that  can be conveyed 
by a photographic print. 

Thus any periodic structure in which the scattering 
power is modulated by any large-scale variation pro- 
duces a diffraction pattern consisting of a low-angle 
pattern located about each order of the high-angle 
pattern. Furthermore if this low-angle pattern does 
not extend over two or more orders of the high-angle 
pattern, and if the latter is sufficiently sharp, it is then 
a faithful Fourier transform of the modulation. How- 
ever, if the fine-scale periodic structure is imperfect 
its high-angle diffraction pattern will consist of broad- 
ened peaks and these convoluted with a small-angle 
pattern may produce a diffuse distribution of in- 
tensity in which the details of the low-angle pattern 
may be completely obscured. But whatever the degree 
of order in the fine-scale structure there is always a 
strong and very sharp zero-order diffraction maximum 
(James, 1950) and consequently a low-angle pattern 
centred on this should appear distinctly, again pro- 
vided that  it is not so extensive as to overlap higher 
orders of the high-angle pattern. This is precisely what 
is observed in diffraction by collagen fibres whether 
wet or dry. Furthermore the nature of this low-angle 
pattern depends entirely upon the large-scale modula- 
tion function and is quite independent of the detailed 
atomic arrangement. 

Distort ion  and disorder  in co l lagen f ibres  

The diifuseness of the high-angle pattern of collagen, 
and the detection of the low-angle pattern only in the 
centre of the field, clearly indicates that  the fine 
structure is not well ordered. The effects of disorder 
on the high-angle pattern have been considered in 
detail by Andreeva & Iveronova (1957). But, as argued 
above, such disorder cannot affect the nature of the 
low-angle pattern. This can be modified only by 
distortions of the structure on a scale comparable with 
the macro-period, and fanning of the low-angle pattern 
must therefore be explained in terms of such relatively 
large distortions. These may be introduced either by 
regular displacements such as a shearing or twisting 
of the structure, or by making small random displace- 
ments of elements of the structure which are cumula- 
tive. 

Electron-micrographs of teased-out collagen fibres 
often show fibrils having a longitudinal shear (Fig. 2) 
and although the treatment of the material in this case 
is different from that involved in preparing specimens 
for the X-ray diffraction camera it is clear that  sheared 
configurations of fibrils readily occur. I t  may be 
emphasized that  the production of fanned diffraction 
patterns of dried collagen depends upon somewhat 
ill-defined pre-treatment of the fibres (Bear, 1952) 

which could conceivably result in the production of 
a bundle of fibrils sheared like those of Fig. 2. 

Sheared t w o - d i m e n s i o n a l  diffractors 

In order to simplify the discussion of the effects of 
shearing attention will be directed mainly to two- 
dimensional gratings which when undistorted have a 
periodic density variation along one direction only. 
First a simple argument showing that  shearing must 
result in a fanning effect will be presented. 

Consider an infinitely extended grating consisting of 
parallel lines of scattering matter spaced at intervals d 
(Fig. 3). Such a grating produces in reciprocal space 
a set of points along the z* axis with separation 
d* = 1/d. If the grating is sheared along the z direction 
as shown the result is equivalent to a grating lying 
along O P  with spacing d cos a. This grating yields a 
diffraction pattern represented in reciprocal space by 
the points along O P '  with spacing d*/cos a. The dis- 
tortion of the grating has therefore translated the 
reciprocal lattice points along lines perpendicular to 
O Z * .  Thus a set of gratings with angles of shear 
uniformly distributed between + a and diffracting 
independently must produce a diffraction pattern in 
which the intensity maxima are drawn out along the 
layer lines by an amount proportional to the index of 
diffraction, i.e. a fanned pattern. 

Z Z* 
p p' 

X ~ X *  

/I 
(a) (b) 

Fig. 3. (a) A plane grating of infinite extent lying along OZ 
sheared to become a grating lying along OP with spacing 
d cos a. (b) The intensity distribution in reciprocal space 
consisting of points along OZ* for the undistorted grating, 
and along OP" after shearing. Corresponding points lie on 
lines parallel to OX*. 

In this simple example the distribution of intensity 
along the lines is uniform, but clearly non-uniform 
distributions of the shearing angles, or more elaborate 
distortions, would give other intensity distributions; 
in addition there is the possibility that  the distorted 



ACTA CRYSTALLOGRAPHICA, VOL. 13, 1960---ToMLIN AND ERICSON PLATE 7 

• • | p • • w G 

. ~ Q O O  m * o 

, , , e e O . .  

(a) (b) (c) 
Fig. 1. (a) Optical diffraction pat tern  of an extended two-dimensional diffractor of small periodicity. (b) OpticaI diffraction 

pat tern  of a tr iangular aperture large compared with the period of the diffractor producing (a). (c) The diffraction pat tern  
which results from superposing the tr iangular aperture on the two-dimensional diffractor. 

Fig. 2. Electron-micrographs of collagen fibres showing longitudinal shear. 
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(a) (b) (c) 
Fig. 7. Optical diffraction pat terns and prints from the corresponding masks. (a) A linearly sheared grating to be compared 

with Fig. 3. (b) An approximately  parabolically sheared grating to be compared with Fig. 5. (c) A grating consisting of 
an undistorted par t  and two-displaced linearly sheared sections illustrating interference effects in the off-axis part  of the 
pattern.  

[ T O  f a c e  p .  3 9 6  
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gratings of a set m a y  not  all diffract  independent ly ,  
in which case interference of diffracted beams reaching 
a given layer  line would fur ther  modify  the in tens i ty  
distr ibutions.  

G e n e r a l  e x p r e s s i o n  for  line shape due 
to shearing 

Consider a two-dimensional  object lying in an x, z 
plane which has electron densi ty  ~(x, z). If  So and s 
are uni t  vectors paral lel  to the incident  X-ray  beam 
and a diffracted beam respectively,  and if r is the 
vector defining the point  x, z then  the in tens i ty  at the 
point  Q(R, 0, ~), where R, 0 and ~ are defined by  Fig. 4, 
is given by  

]YIg"= I~/(R2) I I  ~(x,z) e x p ( - i k r . s - s o ) d x d z  2 (1) 

Here k = 2n /2  where 2 is the wavelength of the incident  
radiat ion,  and I0 is the ampl i tude  at uni t  distance of 
the wave scattered by  one electron in the direction s. 
I0 is a funct ion of direction but  in considering low-angle 
diffraction 0 and  ~ are so small  tha t  I0 m a y  be regarded 
as constant.  

z 

x,z ~I(R,O,p) 
0 + / 

Fig. 4. Definition of coordinates and other variables. 

The development  of this formula for the case where 
is a function of z only, having a period of 2d, is 

straightforward.  For a grat ing extending from x=  
- X  to x = X, and from z = - N d  to z - - N d  (i.e. having 
a large number  N of complete periods) one finds for 
the in tens i ty  of the n th  order of the diffraction pattern.  

where 

I~ [sin lcXq)12 lF~l 2 
IY~l~ = 4N2Xe--I~z \ kXct) ] ' (2) 

l 
d 

Fn = O(z) exp ( - i n ~ ( z / d ) ) d z .  
- -d  

The in tens i ty  var ia t ion in az imuth  is tha t  due to 
diffraction by a single slit of width  2X and is inde- 
pendent  of the index of diffraction. 

Suppose now tha t  the diffractor is sheared parallel  
to OZ so tha t  a line of constant  ~ which was previously 
paral lel  to OX becomes a curve. If  A (x) (a function of 
x only) is the displacement  at  x parallel  to OZ the 
in tens i ty  at  Q due to the distorted grat ing is, by  a 
modif icat ion of equat ion (1) 

A C 13 - -  9.7 

I~ l l x ILL~(Z-- dxdz 2 = A) exp ( - i k r . s - s o )  . l Y12 ~ - z  

Write  (3) oo 

O(z) = ~S Av exp (ipz~(z/d)) 
BOO 

and subst i tute  into (3). Then since 

r .  s - So -- x cos 0 sin q9 q- z sin 0 
= xcp+zO 

for low-angle diffraction, and because the in tens i ty  
m a x i m a  occur where 

kO=n(~/d)  

one finds for the in tens i ty  in the n th  order 

I Yn[ 2 = Nu I~ l: / d ) -  ikxqD)dx 2 ~-~ IAnl 2 exp ( - i n ~ ( A  
t/--Z 

Thus, in general, as the result  of a longitudinal  
shear the in tens i ty  along the layer  lines is given by 
the factor 

' f x 12 
¢~ = exp ( - i (n~/d)A (x) - ikcpx) dx 

- - Z  

which is independent  of the l inear  densi ty  var ia t ion 
of the undis tor ted diffractor. 

S o m e  special cases of shearing 

~b~ m a y  be readi ly  evaluated for the l inear shearing 
func t ion /4  = ax to give 

[sin (n~(a/d) + kqg)X 12 

which yields a pa t te rn  of spots of the same shape as 
for the undis tor ted grat ing but  shifted off-axis by  an 
amount  proport ional  to n. This is s imilar  to the situa- 
t ion represented in Fig. 3 except tha t  the grating is 
now of finite width.  

Any  k ind  of shearing which can be made  up of l inear 
displacements  can be t reated similarly.  Among other 
shearing functions which are amenable  a parabolic 
distort ion A = ax e has been considered. This gives ¢,~ 
in terms of Fresnel  integrals:  

= cos ½(~)y2dy + sin ½(~)y2dy , 

where 

f l = ( - X + ~ ) \ n ~ /  ' y = ( X + ~ ) \ n ~ /  

1 kd 
- 2a n~  q)" 

In  Fig. 5 are shown the in tens i ty  profiles for the first 
eight orders of such a grating. The values of the para- 
meters given were chosen for ease of calculation and  
correspond to the sketched grating. Ev iden t ly  a s l ightly 
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distorted object produces a well fanned diffraction 
pattern. 

1.2 

n=l  

O.8 

0"~ ' ~  ( " -  - - 2X - -  - - )  

n-3 

n=5 

I 
2~ 4.z 6~ kq~X 

Fig. 5. The intensity distributions in the 1st, 3rd, 5th, and 7th 
orders of a diffraetor sheared parabolically as shown. 
Fanning of the pat tern  is shown by  the increasing widths 
of the distributions with order. 

Further complication of the intensity profiles occurs 
whea the shearing is such that  two separated parts of 
the ~ratin~ diffract into the same region of reciprocal 

space, so that  interference occurs. _An example o~ a 
distortion producing this kind of effect is afforded by 

-2~ 0 kq~X 2~ 

Fig. 6. The intensity distributions in the 1st and 10th orders 
of the pat tern  due to sinusoidal shearing. One period of the 
sheared grating is shown to scale. Fanning is evident, with 
the appearance of a double peak in the higher orders. 

a sinusoidal shearing function, conveniently taken as 

A = - a sin ~r(x/X) 

for which the grating is represented in :Fig. 6 along 
with spot shapes calculated for two different orders 
of diffraction. The angular distribution function is 

Cn = 2XJ~(z), 

where v = kq~X/~, z = nzl(a/d) and Jr(z) is Anger's 
function (Watson, 1922). This function we have 
tabulated in sufficient detail to allow the plotting of 
¢~ for the first and tenth orders of a grating for which 
a/d= 1/20 (:Fig. 6). These curves are sufficient to show 
the development of fanning with strong intensity varia- 
tion along the layer lines. 

Replication of gratings 
A set of gratings arranged with some degree of order 
must be expected to show further peculiarities of spot 
shapes as a result of interference between beams from 
different gratings. In this connection it is instructive 
to consider two similar gratings displaced relative to 
one another. Referring to Fig. 4, suppose the grating 
displaced so that  its origin moves to the point in the 
x, z plane defined by the vector t while remaining 
parallel to OZ. 

The diffracted wave amplitude at Q due to the 
displaced grating is, from (1), 

'°if Yt = ~ Q(r+t)  exp ( - i k r + t . s - s o ) d x d z .  

Since ~(r + t) = ~(r) 

Yt = exp ( - ikt.  s - so) Y. 

The resultant intensity at Q due to the original and 
displaced gratings diffracting together is 

I Yrl 2 = I I+exp  ( - i k t . s - s o ) l ~ l Y l  2 
= 4 cos 2 (½kt.s-s0)lYI 2. 

The pattern due to the single grating is modulated 
by the function cos 9 (½kt. s - so ) .  If the two gratings 
are similarly sheared then the drawn out diffraction 
spots of the individual patterns might be broken up 
by the modulation function. For example two gratings 
like those of Fig. 5. placed side by side, so that  t has 
only an x component of 2X, would produce a pattern 
like that  of Fig. 5, modulated by the function 
4 cos 2 kXq~. This would have the effect of brealdng 
the higher orders into three or more spots along the 
layer lines. 

The diffraction pattern due to a real collagen fibre 
is the result of diffraction by many fibrils. If these 
were arranged on a precise transverse lattice the dif- 
fraction effects could be calculated by an obvious 
extension of the above argument. Such regularity 
would cause a fine structure to appear in the diffrac- 
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tion spots, but this is not in fact observed. However, 
the individual fibrils cannot be completely disordered 
transversely, and the structure is in this respect not 
unlike that  of a liquid, so that  a coarse modulation 
of the pattern due to a single fibril might be expected 
in the higher orders of a fanned pattern. 

This figure shows results calculated for a shearing of 
d/20 and with all orientations of the plane of shear 
being equally likely. The derivation of the necessary 
formula is outlined in an appendix. 

1"0 

Optical illustrations 

The conclusions reached above have been verified by 
experiments with an optical diffractometer. The masks 
were made by photo-reduction of drawings of gratings, 
and were mounted in methyl benzoate between optical 
flats. Some of these results are shown in Fig. 7 and 
as illustrations of the previous discussions speak for 
themselves (see Plate 7). 

The subsidiary maxima along the layer lines are 
more pronounced than would be the case if the gratings 
represented correctly the projected density of cylin- 
drical fibres. For further relevant discussion of diffrac- 
tion by curved edges see Sommerfeld's 'Optics' (1954). 

Sheared cylindrical diffractors 

We now have a sufficient basis for a qualitative discus- 
sion of the low-angle pattern due to a set of parallel 
cylindrical fibrils forming a fibre. Such a fibril lying 
along a z axis has, if undistorted, a Fourier transform 
consisting of a set of intensity discs centred on, and 
perpendicular to the z* axis of reciprocal space 
(Bear & Bolduan, 1950). Suppose now that  the cylin- 
drical fibre is sheared so that  a cross section is tilted 
about the y axis (Fig. 4). By analogy with the example 
of Fig. 7 the diffraction discs will be displaced off the 
z* axis along lines parallel to x* by amounts propor- 
tional to the indices of diffraction, the centres of the 
discs remaining in the x'z* plane. But this plane is 
effectively the sphere of reflection since we are con- 
cerned only with low-angle diffraction. Consequently 
the intersection of the sphere of reflection with the 
intensity discs is unaffected except for the displace- 
ment. 

Next suppose the fibril to be sheared by tilting a 
cross section about the x axis. Now the diffraction 
discs will be displaced off the z* axis along lines 
parallel to y* and the centres of all the discs will then 
lie either behind, or in front of, the x'z* plane. The 
intersections with this plane, which is effectively the 
sphere of reflection, will be no longer through the 
diameters of the intensity discs, but through chords 
of decreasing length as the index of diffraction in- 
creases. Consequently the diffraction pattern will 
consist of spots which become narrower, and weaker 
in the higher orders, as compared with the pattern 
due to the undistorted fibril. 

I t  follows that  a fibre consisting of a set of in- 
dependently diffracting fibrils equally sheared but 
with a variety of orientations of the planes of shearing 
would produce a diffraction pattern like that  of Fig. 8. 

27* 

~>. 

~: o.5 
t -  

n=2 

! 
! 

2d 
I 
i ,I, 

~-- 2 R  --~ 

aR = o/_aa 
d 

0 ~ 2~ 
k~R 

Fig. 8. I n t ens i ty  d is t r ibut ions  due  to a set  of l inearly sheared 
cyl inders  d i s t r ibu ted  un i formly  in or ientat ion.  The  degree 
of shear  is shown to  scale in the  insert.  Fann ing  occurs 
wi th  the  deve lopmen t  of two off-axis peaks  in the  higher 
orders. 

This is a simple example of a sheared three-dimen- 
sional structure yielding a fanned low-angle diffraction 
pattern having a strong intensity variation across the 
spots. With a variety of shearing angles as well as 
orientations there would be a tendency to even out the 
intensity variations. On the other hand a particularly 
simple shearing function has been considered and 
earlier remarks on the possible interdependence of 
diffractors should not be forgotten. 

Randomly disordered gratings 

In this section a rigorous examination will be made 
of a particularly simple example of the kind of problem 
considered by Bear & Bolduan (1950, 1951), an 
example which avoids some of the mathematical 
complexity of their second paper, and which brings 
out an error in their procedure. 

Suppose a two-dimensional grating lying in the x, z 
plane of Fig. 4 has a density variation @(z) which is 
a function of z only and has a period of 2d. Imagine 
the grating divided into narrow strips parallel to OZ, 
of width 2w. Each strip is then displaced parallel to 
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OZ by an amount _+ a relative to its neighbour, 
either sign of the displacement being equally likely. 
The problem is to determine the diffraction pat tern 
due to an assembly of such gratings diffracting in- 
dependently. 

For  one particular member of this assembly the 
diffraction pat tern  may be calculated by regarding 
the grating as sheared by a step-like shearing function. 
The angular distribution of intensity in the nth order 
is given by the following factor which is an obvious 
modification of equation (4)" 

~ 1  [ . ( 2 r + l ) w  

¢ ~ - -  ~ exp ( - i n ( ~ / d ) A , - i k q ~ x ) d x  I2 , 
r=O ¢ ( 2 r - 1 ) w  

where Ar is the displacement of the r th strip. There 
are N strips and the integration across the full width 
of the grating is part ly  replaced by summations. 

On carrying out the integration across a single strip, 
and putt ing 

2kqTw = a, n(7~/d) = f and W =  4w ~ (sin :ta/1"~22 12~'~ 
N--1 2 

¢ ~ = W  ~Yexp ( - i f  Air - far)  . 
r=0 I 

For the whole assembly of gratings the mean value 
of ~ is 

N--1 2 

q~ = W2; P 2 ; e x p  ( - f l A i r - f a r )  
s r=O 

where P is the probability of a given sequence of 
values of Air, and 2;  means summation over all 

8 

possible sequences. 
If each strip is displaced _+ a, with equal likelihood, 

relative to its neighbour, all possible sequences have 
the same probability of occurrence, viz. (½)~. 

IV--1 N--i 
2 

. ' .  ( I ) n =  W ( ½ ) N 2 ;  . ~  _fi, exp[- i f l (A~ , -Alq) - ia (p-q)] .  
s p = 0  q = 0  

To evaluate this, interchange the summations and 
consider 

(½)~ 2;  exp [ - i f  (Al~- Alq)]. 
8 

NOW /]p-Aq--~a where v is an integer such that  
- ( p - q )  <_ v <_ (p -q ) .  

We need the number of sequences corresponding to 
a given v. This is equivalent to asking how many ways 
are there of tossing I coins so tha t  between the 
pth  and qth throws there should be v more heads than 
tails. The answer is (see for example Chandrasekhar, 
1943) 

... (½)~2; exp [ - i f ( A ~ - ~ ) ]  
8 

- ( ) = 2; (½)~v2s-P-q P--q exp ( - i f a v )  
~=_~-~) ½(p-  q + ~) 

=(cos f l a )  ~-q for p > q .  

Since the number of sequences is the same for p < q 
as for p > q, in general 

(½)~¢2; exp [ - i f  (Alp- Aq)] --- (cos f a )  Ip-ql 
8 
_hr--1 N--1 

.'. q~ = W 2; 2:  exp [ - i a ( p - q ) ]  (cos fie) Ip-ql 
p = O  q=O 

After some manipulation this leads to 

N s i n 2 f a  (1 - 2 cosec cos fa  + cos~fa) 
- 2 cos o~ cosf a + 4 cos2f o ' -  2 cos a cosaf a 

+ 2 cos N + 1 a cos~'+lfl a -  4 cos N a cosZC+2f a 
+ 2 cos N -  I a cos ~+a f a _ _  

-~ ¢~= 
( 1 - 2  cos a cos f a +  cos2 fa)2 

This result is given at length because it is rigorous 
and leads to conclusion distinctly different from those 
of Bear & Bolduan whose method of calculation in- 
volves approximations. 

On taking N large and sin fig not too small 

N sin 2 f ¢2.= w 
1 - 2 cos a cos f a + cos 2 f a " 

Fig. 9 shows line profiles calculated from this last 
expression for a/d = 1/20. Evident ly fanning occurs and 
the higher orders show the development of off-meridian 
peaks. But the point of particular interest is tha t  ¢~ 
is a periodic function of f a  so tha t  when f i e=  2~ the 
intensity distribution is the same as for f a= 0 which 
is the case of the undistorted grating. Thus initially 
the pat tern fans outward to a maximum extension 
when fla = ~ and then contracts inwards again to the 
meridian, and so on. Physically, a periodicity is to be 
expected, for if a = 2 d  the displacements of adjacent 
strips are equal to the period of the grating, and the 
density distribution is unaltered by the disordering. 

In applying the method of Bear & Bolduan (1951) 
to this particular problem the correct binomial distri- 
bution function used above is replaced by the approx- 

o 4  

n Jr f l 0 =  3~ 

n=18 or 22 

a= 2 kqJw 

Fig. 9. Average intensity distributions from gratings divided 
lengthwise into narrow strips which are displaced parallel 
to their length in the manner of a random walk. 
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imate Gaussian distribution (Chandrasekhar, 1943), 
and the finite summations are replaced by integrations 
in which it is assumed that the limits may be extended 
to infinity. This procedure leads to 

(I)~ = 16 N w ~" /32 (# 
/34a4 + (4k~w)~ 

which is analogous to the formula quoted by Bear & 
Bolduan (1951) for the case of a diffractor comprised 
of cylindrical fibrils disordered in the same way as 
the strips of our two-dimensional grating. According 
to this last result fanning occurs but the line profiles 
are of similar shapes and there is never a double 
maximum of intensity as in Fig. 9 and no periodic 
dependence of the spot shape on diffraction index. 

about their mean ordered positions can have no effect 
upon the low-angle patterns, and this kind of disorder 
should be distinguished from the cumulative kind. 

Since a simple shearing of fibrils appears to account 
for observed effects at least as well as a particular 
kind of disordering, and since shearing is an observable 
distortion of isolated fibrils, the notion of regions of 
order and disorder in collagen fibrils cannot be con- 
sidered to be unambiguously supported by X-ray 
diffraction studies. I t  can be inferred from wide-angle 
diffraction patterns that  there is some disorder in the 
form of fine scale displacements from regular positions, 
but this is unrelated to the characteristics of low- 
angle patterns which can be explained without postu- 
lating regions of order and disorder. 

C o n c l u s i o n s  

From a consideration of a number of simple cases of 
regular shearing of diffractors it is clear that  distor- 
tions of this kind are entirely adequate to account for 
the phenomenon of fanning of low-angle X-ray dif- 
fraction patterns, and for the appearance of complex 
intensity distributions along the layer lines. Such dis- 
tortions are commonly observed in electron-micro- 
graphs of teased fibrils and are of such magnitude as 
to make the choice of parameters used in the above 
computations distinctly conservative. Of course these 
fibrils have been subjected to severe treatment but 
evidently the shearing considered here is of a kind to 
which collagen fibres are demonstrably susceptible. 
Assuming a suitably dried fibre to consist of fibrils 
of various degrees of shear and orientation a fairly 
simple explanation of the observed fanning effects 
emerges. 

The more elaborate explanation of Bear & Bolduan 
(1951) in terms of ordered and disordered regions of 
the fibrils is much more difficult to discuss quantita- 
tively. They themselves point out some of the in- 
adequacies of their model and there appears to be a 
significant error in their treatment of the problem 
which makes their results valid only if a is small, 
although, again, another approximation requires that  

be not too small. But probably their formulae are 
fairly reliable for the relatively few orders (excluding 
the first three or four) of the diffraction patterns that  
have been observed. For higher orders there might be 
a considerable difference between the effects of regular 
shearing and the kind of disorder considered by Bear 
& Bolduan and exemplified by the above discussion 
of the two-dimensional grating. 

I t  should be emphasized that  the disorder of Bear & 
Bolduan is of a peculiar kind in that, although the 
individual displacements ~ may be small, there are 
appreciable probabilities of building up relatively 
larger displacements of the kind which are responsible 
for observable effects in low-angle diffraction patterns. 
Small displacements of atoms or small groups of atoms 

A P P E N D I X  

S h e a r e d  c y l i n d r i c a l  f i b r i l s  

A point in the cylinder is defined by cylindrical co- 
ordinates r, to, z and Fig. 4 defines other coordinates 
and shearing parameters. The cylinder of radius R is 
sheared so that  a plane initially perpendicular to O Z  
is rotated about a line perpendicular to the direction 
in the x, y plane so that  OA is displaced to O B  through 
an angle r/. 

The displacement of the point r, to, 0 is given by 

A = r  cos (~-to) tan u = a r  cos (~-to)  . 

Following the treatment of the cylindrical diffractor 
given by Bear & Bolduan (1950) and introducing the 
shearing function as in the above discussion of two- 
dimensional diffractors the azimuthal distribution of 
intensity in the diffraction maxima is given by 

i o o exp [ -  i k r g  j cos (to - ~x) 
drdto 2 - i n ~ ( a / d ) r  cos (to- ~)] 

where 
h v cos c~ = cos 0 sin 

sin a = cos 0 cos ~ -  1 . 
On putting 

/cT cos ( t o - a )+n~(a /d )  cos ( t o - ~ ) = A  cos (to--/3) 

so that  

A 2 = lc2~ ~ + ( n z ( a / d ) )  2 + 2 k T n ~ ( a / d )  cos ( ~ -  a) 

the double integral can be evaluated to give 

~b~= (2 zR2)2 {J1 ( A R ) / A R )  2. 

This is the result for a single fibril sheared in the 
direction 2. For a number of independent diffractors 
having a uniform distribution of ~ from 0 to 27~ i.e. 
all possible directions of shear, the resultant intensity 
is given by 

where 
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co ~ = x ~ + y~" - 2xy  cos ? 
and  

x-- /c~lR _~/c~R for low angle d i f f rac t ion ,  
y =  - n T ~ ( a / d ) R ,  
? = ~ - a  . 

The integral  has been evaluated  only in series form 
as follows : 

From Watson (1922) 

where 

J~ (cod) - .  ~ (xy cos ~,)~ J~+~(z) 

co p=o P! zp+~ 

z ~ = x ~. + y% 

On squaring, the general even te rm in cos ~, is 

q=~ (p_q)! (p+q)! j (xycos?)~. 

Since 

I " 2p! 
0cos 2~?d~' - (2~p)) e 

i 
~ [ j l (w)]~ oo 1 

p=o (2~p. 

In t roducing the  function, t abu la ted  by J a h n k e  & 
Emde  (1945), 

Jp(z) 
A~ (z) = 2~p! - -  

zp 

one finds for the first few terms of the series 

+ 1/6.144 (10A~ + 10A2A4 + A~As)(xy/lO)4 
+ 1/371.6 (87.5A~ + 105AsA5 

+ 21A~ A6 + A1 AT) (xy/10p + . . . .  

This is the expression from which the results of 
Fig. 8 were calculated. I t  is quite adequate  to show the  
general t rend  of the  diffraction pa t t e rn  bu t  with the  
parameters  used proved to converge too slowly to be 
reliable for orders above the tenth .  

One of us (L. G. E.) wishes to acknowledge the  
award  of an Austra l ian  C.S.I .R.O. pos t -gradua te  
studentship.  
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